Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
868725226.pdf22.59 MBAdobe PDFView/Open
Title: Transient pulse compression at a group velocity horizon
Authors: Babushkin, IharAmiranashvili, ShalvaBrée, CarstenMorgner, UweSteinmeyer, GünterDemircan, Ayhan
Issue Date: 2015
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2120, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: Group-velocity matched cross-phase modulation between a fundamental soliton and a dispersive wave-packet has been previously suggested for optical switching applications similar to an optical transistor. Moreover, the nonlinear interaction in the resulting groupvelocity horizon can be exploited for adiabatic compression of the soliton down into the fewcycle regime. Here we show that both mechanisms can be combined. In such a transient compressor, parameters of the dispersive wave may then serve to actively control the soliton compression and adjust the pulse duration in the presence of disturbances. While a certain amount of control is already enabled by the delay between soliton and dispersive wave, the means of controlling the compression process are substantially enhanced by additionally manipulating the chirp of the dispersive wave. Moreover, controlling the chirp of the dispersive wave also enables correction for limitations of the compression scheme due to a self-frequency shift of the soliton or for uncompensated dispersion in the scheme. This substantially widens the practicality of the compression scheme and other applications of the highly efficient nonlinear interaction at the group-velocity horizon.
Keywords: Chirp; Pulse compression; Temporal solitons; Optical event horizons
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.