Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3435
Full metadata record
DC FieldValueLanguage
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.contributor.authorCaiazzo, Alfonso
dc.contributor.authorIliescu, Traian
dc.contributor.authorJohn, Volker
dc.contributor.authorSchyschlowa, Swetlana
dc.date.accessioned2016-03-24T17:37:28Z
dc.date.available2019-06-28T08:25:11Z
dc.date.issued2013
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/3435
dc.identifier.urihttp://dx.doi.org/10.34657/1873-
dc.description.abstractThis report has two main goals. First, it numerically investigates three velocity-pressure reduced order models (ROMs) for incompressible flows. The proper orthogonal decomposition (POD) is used to generate the modes. One method computes the ROM pressure solely based on the velocity POD modes, whereas the other two ROMs use pressure modes as well. To the best of the authors knowledge, one of the latter methods is novel. The second goal is to numerically investigate the impact of the snapshot accuracy on the ROMs accuracy. Numerical studies are performed on a two-dimensional laminar flow past a circular obstacle. It turns out that, both in terms of accuracy and efficiency, the two ROMs that utilize pressure modes are clearly superior to the ROM that uses only velocity modes. The numerical results also show a strong correlation of the accuracy of the snap shots with the accuracy of the ROMs.
dc.formatapplication/pdf
dc.languageeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1765, ISSN 0946-8633-
dc.subjectNavier–Stokes equations
dc.subjectproper orthogonal decomposition
dc.subjectvelocity-pressure reduced order models
dc.subjectsnapshot accuracy
dc.subject.ddc510
dc.titleA numerical investigation of velocity-pressure reduced order models for incompressible flows
dc.typereport-
dc.typeText-
dc.description.versionpublishedVersioneng
local.accessRightsopenAccess-
wgl.contributorWIASger
wgl.subjectMathematikger
wgl.typeReport / Forschungsbericht / Arbeitspapierger
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik-
local.identifier.doihttp://dx.doi.org/10.34657/1873-
Appears in Collections:Mathematik

Files in This Item:
File SizeFormat 
749623926.pdf2.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.