Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
869032720.pdf649,98 kBAdobe PDFView/Open
Title: Analysis of a full space-time discretization of the Navier-Stokes equations by a local projection stabilization
Authors: Ahmed, NaveedRebollo, Tomás ChacónJohn, VolkerRubino, Samuele
Issue Date: 2015
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2166, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: A finite element error analysis of a local projection stabilization (LPS) method for the time-dependent Navier-Stokes equations is presented. The focus is on the highorder term-by-term stabilization method that has one level, in the sense that it is defined on a single mesh, and in which the projection-stabilized structure of standard LPS methods is replaced by an interpolation-stabilized structure. The main contribution is on proving, theoretically and numerically, the optimal convergence order of the arising fully discrete scheme. In addition, the asymptotic energy balance is obtained for slightly smooth flows. Numerical studies support the analytical results and illustrate the potential of the method for the simulation of turbulent ows. Smooth unsteady flows are simulated with optimal order of accuracy.
Keywords: Evolutionary incompressible Navier–Stokes equations; high order term-by-term LPS scheme; finite element error analysis; high Reynolds number flow
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.