Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/3478
Files in This Item:
File SizeFormat 
869027883.pdf373,76 kBAdobe PDFView/Open
Title: Existence, numerical convergence, and evolutionary relaxation for a rate-independent phase-transformation model
Authors: Heinz, SebastianMielke, Alexander
Issue Date: 2015
Published in: Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 2163, ISSN 2198-5855
Publisher: Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract: We revisit the two-well model for phase transformation in a linearly elastic body introduced and studied in [MTL02]. This energetic rate-independent model is posed in terms of the elastic displacement and an internal variable that gives the phase portion of the second phase. We use a new approach based on mutual recovery sequences, which are adjusted to a suitable energy increment plus the associated dissipated energy and, thus, enable us to pass to the limit in the construction of energetic solutions. We give three distinct constructions of mutual recovery sequences which allow us (i) to generalize the existence result in [MTL02], (ii) to establish the convergence of suitable the evolutionary relaxation from the pure-state model to the relaxed mixture model. All these results rely on weak converge and involve the H-measure as an essential tool.
Keywords: Energetic solution; mutual recovery sequences; H-measures; laminates; two-phase material model; evolutionary Gamma-convergence
DDC: 510
License: This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Appears in Collections:Mathematik



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.