Bitte benutzen Sie diesen Identifier, um auf die Ressource zu verweisen:
Dateien zu dieser Publikation:
Datei Beschreibung GrößeFormat 
Boysen_2016_Environ._Res._Lett._11_095010.pdf2.62 MBAdobe PDFAnzeigen/Öffnen
Boysen_2016_Environ._Res._Lett._11_129502.pdf602.33 kBAdobe PDFAnzeigen/Öffnen
erl095010_suppdata.pdf1.42 MBAdobe PDFAnzeigen/Öffnen
Titel: Impacts devalue the potential of large-scale terrestrial CO2 removal through biomass plantations
Autor(en): Boysen, L. R.Lucht, W.Gerten, D.Heck, V.
Erscheinungsjahr: 2016
Publiziert in: Environmental Research Letters, Volume 11, Issue 9
Verlag: Bristol : IOP Publishing
Abstract: Large-scale biomass plantations (BPs) are often considered a feasible and safe climate engineering proposal for extracting carbon from the atmosphere and, thereby, reducing global mean temperatures. However, the capacity of such terrestrial carbon dioxide removal (tCDR) strategies and their larger Earth system impacts remain to be comprehensively studied—even more so under higher carbon emissions and progressing climate change. Here, we use a spatially explicit process-based biosphere model to systematically quantify the potentials and trade-offs of a range of BP scenarios dedicated to tCDR, representing different assumptions about which areas are convertible. Based on a moderate CO2 concentration pathway resulting in a global mean warming of 2.5 °C above preindustrial level by the end of this century—similar to the Representative Concentration Pathway (RCP) 4.5—we assume tCDR to be implemented when a warming of 1.5 °C is reached in year 2038. Our results show that BPs can slow down the progression of increasing cumulative carbon in the atmosphere only sufficiently if emissions are reduced simultaneously like in the underlying RCP4.5 trajectory. The potential of tCDR to balance additional, unabated emissions leading towards a business-as-usual pathway alike RCP8.5 is therefore very limited. Furthermore, in the required large-scale applications, these plantations would induce significant trade-offs with food production and biodiversity and exert impacts on forest extent, biogeochemical cycles and biogeophysical properties.
Schlagwörter: Bioenergy; carbon sequestration; climate change; climate engineering; vegetation modeling
DDC: 500
Lizenz: CC BY 3.0 Unported
Link zur Lizenz:
Enthalten in den Sammlungen:Umweltwissenschaften

Zur Langanzeige

Diese Publikatione wurde unter der folgenden Lizenz verouml;ffentlicht: Creative-Commons-Lizenz Creative Commons