Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
angeo-27-755-2009.pdf3.04 MBAdobe PDFView/Open
Title: First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign
Authors: Rapp, M.Strelnikova, I.Strelnikov, B.Latteck, R.Baumgarten, G.Li, Q.Megner, L.Gumbel, J.Friedrich, M.Hoppe, U.-P.Robertson, S.
Publishers Version:
Issue Date: 2009
Published in: Annales Geophysicae, Volume 27, Issue 2, Page 755-766
Publisher: München : European Geopyhsical Union
Abstract: We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density – which we here estimate to be on the order of ~100 cm−3 – and the presence of small scale structures (commonly assumed to be caused by turbulence) need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82–88 km) seen on the upleg is replaced by a narrow layer from 84.5–86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass) within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range ~2–8×10−14 cm3/cm3 (corresponding to mass densities of ~20–80 ng/m3, and water vapor mixing ratios of 3–12 ppm) and are the first such estimates with the unique spatial resolution of an in situ measurement.
Keywords: Aerosols and particles; Atmospheric composition and structure; Instruments and techniques; Middle atmosphere - Composition and chemistry; cloud; electron density; ice crystal; in situ measurement; ionization; mesosphere; vertical distribution
DDC: 530
License: CC BY 3.0 Unported
Link to License:
Appears in Collections:Physik

This item is licensed under a Creative Commons License Creative Commons