Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/4970
Full metadata record
DC FieldValueLanguage
dc.rights.licenseCC BY 3.0 Unportedger
dc.contributor.authorYadav, R.-
dc.contributor.authorEldeeb, M.S.-
dc.contributor.authorRay, R.-
dc.contributor.authorAswartham, S.-
dc.contributor.authorSturza, M.I.-
dc.contributor.authorNishimoto, S.-
dc.contributor.authorVan Den Brink, J.-
dc.contributor.authorHozoi, L.-
dc.date.accessioned2020-07-18T06:12:36Z-
dc.date.available2020-07-18T06:12:36Z-
dc.date.issued2019-
dc.identifier.urihttp://dx.doi.org/10.34657/3599-
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/4970
dc.description.abstractNovel functionalities may be achieved in oxide electronics by appropriate stacking of planar oxide layers of different metallic species, MOp and M′Oq. The simplest mechanism allowing the tailoring of the electronic states and physical properties of such heterostructures is of electrostatic nature - charge imbalance between the M and M′ cations. Here we clarify the effect of interlayer electrostatics on the anisotropic Kitaev exchange in H3LiIr2O6, a recently proposed realization of the Kitaev spin liquid. By quantum chemical calculations, we show that the precise position of H+ cations between magnetically active [LiIr2O6]3- honeycomb-like layers has a strong impact on the magnitude of Kitaev interactions. In particular, it is found that stacking with straight interlayer O-H-O links is detrimental to in-plane Kitaev exchange since coordination by a single H-ion of the O ligand implies an axial Coulomb potential at the O site and unfavorable polarization of the O 2p orbitals mediating the Ir-Ir interactions. Our results therefore provide valuable guidelines for the rational design of Kitaev quantum magnets, indicating unprecedented Kitaev interactions of ≈40 meV if the linear interlayer linkage is removed.eng
dc.description.sponsorshipLeibniz_Fonds-
dc.language.isoeng-
dc.publisherCambridge : Royal Society of Chemistry-
dc.relation.ispartofseriesChemical Science Vol. 10 (2019), No. 6-
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/ger
dc.subjectBinary alloyseng
dc.subjectElectric fieldseng
dc.subjectIon exchangeeng
dc.subjectPositive ionseng
dc.subjectQuantum chemistryeng
dc.subjectCharge imbalanceeng
dc.subjectCoulomb potentialeng
dc.subjectInterlayer linkageeng
dc.subjectMagnetically activeseng
dc.subjectMetallic specieseng
dc.subjectOxide electronicseng
dc.subjectPrecise positioneng
dc.subjectQuantum chemical calculationseng
dc.subjectIridium alloyseng
dc.subject.ddc540-
dc.titleEngineering Kitaev exchange in stacked iridate layers: Impact of inter-layer species on in-plane magnetismeng
dc.typearticle-
dc.typeText-
dc.description.versionpublishedVersioneng
local.accessRightsopenAccess-
wgl.contributorIFWger
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
dc.bibliographicCitation.firstPage1866-
dc.bibliographicCitation.lastPage1872-
dc.bibliographicCitation.volume10-
dc.bibliographicCitation.issue6-
dc.relation.doihttps://doi.org/10.1039/c8sc03018a-
dc.relation.issn2041-6520-
dcterms.bibliographicCitation.journalTitleChemical Science-
local.identifier.doihttp://dx.doi.org/10.34657/3599-
Appears in Collections:Chemie



This item is licensed under a Creative Commons License Creative Commons