Please use this identifier to cite or link to this item:
Title: Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond
Authors: Liu, F.Velkos, G.Krylov, D.S.Spree, L.Zalibera, M.Ray, R.Samoylova, N.A.Chen, C.-H.Rosenkranz, M.Schiemenz, S.Ziegs, F.Nenkov, K.Kostanyan, A.Greber, T.Wolter, A.U.B.Richter, M.Büchner, B.Avdoshenko, S.M.Popov, A.A.
Publishers Version:
Issue Date: 2019
Published in: Nature Communications Vol. 10 (2019), No. 1
Publisher: London : Nature Publishing Group
Abstract: Engineering intramolecular exchange interactions between magnetic metal atoms is a ubiquitous strategy for designing molecular magnets. For lanthanides, the localized nature of 4f electrons usually results in weak exchange coupling. Mediating magnetic interactions between lanthanide ions via radical bridges is a fruitful strategy towards stronger coupling. In this work we explore the limiting case when the role of a radical bridge is played by a single unpaired electron. We synthesize an array of air-stable Ln 2 @C 80 (CH 2 Ph) dimetallofullerenes (Ln 2 = Y 2 , Gd 2 , Tb 2 , Dy 2 , Ho 2 , Er 2 , TbY, TbGd) featuring a covalent lanthanide-lanthanide bond. The lanthanide spins are glued together by very strong exchange interactions between 4f moments and a single electron residing on the metal–metal bonding orbital. Tb 2 @C 80 (CH 2 Ph) shows a gigantic coercivity of 8.2 Tesla at 5 K and a high 100-s blocking temperature of magnetization of 25.2 K. The Ln-Ln bonding orbital in Ln 2 @C 80 (CH 2 Ph) is redox active, enabling electrochemical tuning of the magnetism.
Keywords: dysprosium; erbium; gadolinium; holmium; lanthanide; metal; nanoparticle; radical; terbium; air; Article; chemical bond; electron; magnetism; metal binding; molecular interaction; molecular stability; oxidation reduction reaction; synthesis
DDC: 620
License: CC BY 4.0 Unported
Link to License:
Appears in Collections:Ingenieurwissenschaften

This item is licensed under a Creative Commons License Creative Commons