Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/6164
Full metadata record
DC FieldValueLanguage
dc.rights.licenseEs gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.en
dc.contributor.authorOelen, Allard-
dc.contributor.authorJaradeh, Mohamad Yaser-
dc.contributor.authorStocker, Markus-
dc.contributor.authorAuer, Sören-
dc.date.accessioned2021-04-28T14:11:02Z-
dc.date.available2021-04-28T14:11:02Z-
dc.date.issued2020-
dc.identifier.urihttps://oar.tib.eu/jspui/handle/123456789/6164-
dc.identifier.urihttp://dx.doi.org/10.34657/5212-
dc.description.abstractReviewing scientific literature is a cumbersome, time consuming but crucial activity in research. Leveraging a scholarly knowledge graph, we present a methodology and a system for comparing scholarly literature, in particular research contributions describing the addressed problem, utilized materials, employed methods and yielded results. The system can be used by researchers to quickly get familiar with existing work in a specific research domain (e.g., a concrete research question or hypothesis). Additionally, it can be used to publish literature surveys following the FAIR Data Principles. The methodology to create a research contribution comparison consists of multiple tasks, specifically: (a) finding similar contributions, (b) aligning contribution descriptions, (c) visualizing and finally (d) publishing the comparison. The methodology is implemented within the Open Research Knowledge Graph (ORKG), a scholarly infrastructure that enables researchers to collaboratively describe, find and compare research contributions. We evaluate the implementation using data extracted from published review articles. The evaluation also addresses the FAIRness of comparisons published with the ORKG.eng
dc.language.isoengen
dc.publisherNew York City, NY : Association for Computing Machineryen
dc.relation.ispartofJCDL '20: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020en
dc.subjectScholarly Knowledge Comparisoneng
dc.subjectScholarly Information Systemseng
dc.subjectComparison User Interfaceeng
dc.subjectDigital Librarieseng
dc.subjectScholarly Communicationeng
dc.subjectFAIR Data Principleseng
dc.subject.ddc020en
dc.titleGenerate FAIR Literature Surveys with Scholarly Knowledge Graphsen
dc.typebookParten
dc.typeconferenceObjecten
dc.typeText-
dc.description.versionacceptedVersionen
local.accessRightsopenAccessen
local.agreementPA-1-
local.relation.conferenceJCDL '20: The ACM/IEEE Joint Conference on Digital Libraries in 2020, August 2020, onlineen
wgl.contributorTIBen
wgl.subjectErziehung, Schul-und Bildungswesenen
wgl.typeBuchkapitel / Sammelwerksbeitragen
wgl.typeKonferenzbeitragen
dc.bibliographicCitation.firstPage97en
dc.bibliographicCitation.lastPage106en
dc.relation.doihttps://doi.org/10.1145/3383583.3398520-
dc.relation.isbn978-1-4503-7585-6-
local.permissionVerlagspolicy-
Appears in Collections:Informationswissenschaften

Files in This Item:
File Description SizeFormat 
Oelen2020, Postprint, Generate FAIR Literature Surveys.pdf1,37 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.