Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/649
Files in This Item:
File SizeFormat 
cp-11-709-2015.pdf8,33 MBAdobe PDFView/Open
Title: Non-linear regime shifts in Holocene Asian monsoon variability: Potential impacts on cultural change and migratory patterns
Authors: Donges, J. F.Donner, R. V.Marwan, N.Breitenbach, S. F. M.Rehfeld, K.Kurths, J.
Publishers Version: https://doi.org/10.5194/cp-11-709-2015
Issue Date: 2015
Published in: Climate of the Past, Volume 11, Issue 5, Page 709-741
Publisher: München : European Geopyhsical Union
Abstract: The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5–7.9, 5.7–5.0, 4.1–3.7, and 3.0–2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0–1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.
Keywords: archaeological evidence; climate change; cultural change; Holocene; human activity; migration route; monsoon; network analysis; speleothem; uncertainty analysis
DDC: 550
License: CC BY 3.0 Unported
Link to License: https://creativecommons.org/licenses/by/3.0/
Appears in Collections:Geowissenschaften



This item is licensed under a Creative Commons License Creative Commons