Please use this identifier to cite or link to this item: https://oar.tib.eu/jspui/handle/123456789/800
Files in This Item:
File SizeFormat 
amt-7-2615-2014.pdf269.55 kBAdobe PDFView/Open
Title: Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei (CCN) measurements
Authors: Krüger, M. L.Mertes, S.Klimach, T.Cheng, Y. F.Su, H.Schneider, J.Andreae, M. O.Pöschl, U.Rose, D.
Publishers Version: https://doi.org/10.5194/amt-7-2615-2014
Issue Date: 2014
Published in: Atmospheric Measurement Techniques, Volume 7, Issue 8, Page 2615-2629
Publisher: München : European Geopyhsical Union
Abstract: In this study we show how size-resolved measurements of aerosol particles and cloud condensation nuclei (CCN) can be used to characterize the supersaturation of water vapor in a cloud. The method was developed and applied during the ACRIDICON-Zugspitze campaign (17 September to 4 October 2012) at the high-Alpine research station Schneefernerhaus (German Alps, 2650 m a.s.l.). Number size distributions of total and interstitial aerosol particles were measured with a scanning mobility particle sizer (SMPS), and size-resolved CCN efficiency spectra were recorded with a CCN counter system operated at different supersaturation levels. During the evolution of a cloud, aerosol particles are exposed to different supersaturation levels. We outline and compare different estimates for the lower and upper bounds (Slow, Shigh) and the average value (Savg) of peak supersaturation encountered by the particles in the cloud. A major advantage of the derivation of Slow and Savg from size-resolved CCN efficiency spectra is that it does not require the specific knowledge or assumptions about aerosol hygroscopicity that are needed to derive estimates of Slow, Shigh, and Savg from aerosol size distribution data. For the investigated cloud event, we derived Slow ≈ 0.07–0.25%, Shigh ≈ 0.86–1.31% and Savg ≈ 0.42–0.68%.
Keywords: aerosol composition; cloud condensation nucleus; hygroscopicity; particle size; size distribution; supersaturation
DDC: 550
License: CC BY 3.0 Unported
Link to License: https://creativecommons.org/licenses/by/3.0/
Appears in Collections:Geowissenschaften



This item is licensed under a Creative Commons License Creative Commons