Please use this identifier to cite or link to this item:
Files in This Item:
File SizeFormat 
acp-16-2689-2016.pdf1,12 MBAdobe PDFView/Open
Title: A new source of methylglyoxal in the aqueous phase
Authors: Rodigast, MariaMutzel, AnkeSchindelka, JanineHerrmann, Hartmut
Publishers Version:
Issue Date: 2016
Published in: Atmospheric Chemistry and Physics, Volume 16, Issue 4, Page 2689-2702
Publisher: München : European Geopyhsical Union
Abstract: Carbonyl compounds are ubiquitous in atmospheric multiphase system participating in gas, particle, and aqueous-phase chemistry. One important compound is methyl ethyl ketone (MEK), as it is detected in significant amounts in the gas phase as well as in cloud water, ice, and rain. Consequently, it can be expected that MEK influences the liquid-phase chemistry. Therefore, the oxidation of MEK and the formation of corresponding oxidation products were investigated in the aqueous phase. Several oxidation products were identified from the oxidation with OH radicals, including 2,3-butanedione, hydroxyacetone, and methylglyoxal. The molar yields were 29.5 % for 2,3-butanedione, 3.0 % for hydroxyacetone, and 9.5 % for methylglyoxal. Since methylglyoxal is often related to the formation of organics in the aqueous phase, MEK should be considered for the formation of aqueous secondary organic aerosol (aqSOA). Based on the experimentally obtained data, a reaction mechanism for the formation of methylglyoxal has been developed and evaluated with a model study. Besides known rate constants, the model contains measured photolysis rate constants for MEK (kp  =  5  ×  10−5 s−1), 2,3-butanedione (kp  =  9  ×  10−6 s−1), methylglyoxal (kp  =  3  ×  10−5 s−1), and hydroxyacetone (kp  =  2  ×  10−5 s−1). From the model predictions, a branching ratio of 60 /40 for primary/secondary H-atom abstraction at the MEK skeleton was found. This branching ratio reproduces the experiment results very well, especially the methylglyoxal formation, which showed excellent agreement. Overall, this study demonstrates MEK as a methylglyoxal precursor compound for the first time.
Keywords: aerosol; carbonyl compound; hydroxyl radical; oxidation; photolysis
DDC: 550
License: CC BY 3.0 Unported
Link to License:
Appears in Collections:Geowissenschaften

This item is licensed under a Creative Commons License Creative Commons